DAVID GRANOVSKY

Posts Tagged ‘NOTTINGHAM’

ULTRASOUND GOES INSIDE LIVE CELLS

In ALL ARTICLES, SCIENCE & STEM CELLS on February 17, 2017 at 9:06 am

Researchers at The University of Nottingham have developed a break-through technique that uses sound rather than light to see inside live cells…like ultrasound on the body, ultrasound in the cells causes no damage and requires no toxic chemicals to work. Because of this we can see inside cells that one day might be put back into the body, for instance as stem-cell transplants

fat-cells1

Researchers at The University of Nottingham have developed a break-through technique that uses sound rather than light to see inside live cells, with potential application in stem-cell transplants and cancer diagnosis.

The new nanoscale ultrasound technique uses shorter-than-optical wavelengths of sound and could even rival the optical super-resolution techniques which won the 2014 Nobel Prize for Chemistry.

This new kind of sub-optical phonon (sound) imaging provides invaluable information about the structure, mechanical properties and behaviour of individual living cells at a scale not achieved before.

Researchers from the Optics and Photonics group in the Faculty of Engineering, University of Nottingham, are behind the discovery, which is published in the paper ‘High resolution 3D imaging of living cells with sub-optical wavelength phonons’ in the journal, Scientific Reports.

“People are most familiar with ultrasound as a way of looking inside the body — in the simplest terms we’ve engineered it to the point where it can look inside an individual cell. Nottingham is currently the only place in the world with this capability,” said Professor Matt Clark, who contributed to the study.

In conventional optical microscopy, which uses light (photons), the size of the smallest object you can see (or the resolution) is limited by the wavelength.

For biological specimens, the wavelength cannot go smaller than that of blue light because the energy carried on photons of light in the ultraviolet (and shorter wavelengths) is so high it can destroy the bonds that hold biological molecules together damaging the cells.

Optical super-resolution imaging also has distinct limitations in biological studies. This is because the fluorescent dyes it uses are often toxic and it requires huge amounts of light and time to observe and reconstruct an image which is damaging to cells.

Unlike light, sound does not have a high-energy payload. This has enabled the Nottingham researchers to use smaller wavelengths and see smaller things and get to higher resolutions without damaging the cell biology.

“A great thing is that, like ultrasound on the body, ultrasound in the cells causes no damage and requires no toxic chemicals to work. Because of this we can see inside cells that one day might be put back into the body, for instance as stem-cell transplants,” adds Professor Clark.

###

More information is available from Professor Matt Clark in the Faculty of Engineering, University of Nottingham on +44 (0)115 951 5536, matt.clark@nottingham.ac.uk; or Emma Lowry, Media Relations Manager, on +44 (0)115 846 7156, emma.lowry@nottingham.ac.uk

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

About The University of Nottingham: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and winner of both ‘University of the Year for Graduate Employment’, according to the 2017 The Times and The Sunday Times Good University Guide and ‘Outstanding Support for Early Career Researchers’ at the Times Higher Education Awards 2015. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16. More than 97 per cent of research at The University of Nottingham is recognised internationally and it is 8th in the UK by research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

ADULT STEM CELLS Revealed: The secret of how worms re-grow amputated body parts… and how humans could one day do the same

In STEM CELLS IN THE NEWS on April 27, 2010 at 8:50 am

WORMS USE ADULT STEM CELLS TO REGROW PARTS

Revealed: The secret of how worms re-grow amputated body parts… and how humans could one day do the same

By Daily Mail Reporter

Scientists have discovered the gene that allows a worm to regenerate its own body parts after they are amputated, it was announced today.

The research into how Planarian worms can re-grow body parts – including a whole head and brain – could one day make it possible to regenerate old or damaged human organs and tissues, the University of Nottingham said.

The research, led by Dr Aziz Aboobaker, a Research Councils UK Fellow in the university’s School of Biology, shows a gene called ‘Smed-prep’ is essential for correctly regenerating a head and brain in Planarian worms.

Research into how Planarian worms can re-grow body parts could one day make it possible to regenerate old or damaged human organs and tissues

Research into how Planarian worms can re-grow body parts could one day make it possible to regenerate old or damaged human organs and tissues

The worms have the unusual ability to regenerate body parts, including a head and brain, following amputation.

They contain adult stem cells that are constantly dividing and can become all of the missing cell types.

They also have the right set of genes working to make this happen as it should so that when they re-grow body parts they end up in the right place and have the correct size, shape and orientation, the research showed.

The study is published today in the open access journal PLoS Genetics.

Dr Aboobaker said: ‘These amazing worms offer us the opportunity to observe tissue regeneration in a very simple animal that can regenerate itself to a remarkable extent and does so as a matter of course.

‘We want to be able to understand how adult stem cells can work collectively in any animal to form and replace damaged or missing organs and tissues.

‘Any fundamental advances in understanding from other animals can become relevant to humans surprisingly quickly.

‘If we know what is happening when tissues are regenerated under normal circumstances, we can begin to formulate how to replace damaged and diseased organs, tissues and cells in an organised and safe way following an injury caused by trauma or disease.

‘This would be desirable for treating Alzheimer’s disease, for example.

‘With this knowledge we can also assess the consequences of what happens when stem cells go wrong during the normal processes of renewal – for example in the blood cell system where rogue stem cells can result in Leukaemia.’

The researchers said Smed-prep is necessary for the correct differentiation and location of cells that make up a Planarian worm’s head, as well as for defining where the head should be located.

They found although the presence of Smed-prep is vital so the head and brain are in the right place, the worm stem cells can still be persuaded to form brain cells as a result of the action of other unrelated genes…

via Revealed: The secret of how worms re-grow amputated body parts… and how humans could one day do the same | Mail Online.

%d bloggers like this: